一文帶你搞懂 Kafka 的系統架構(深度好文,值得收藏)

来源:https://www.cnblogs.com/datadance/archive/2022/05/20/16292991.html
-Advertisement-
Play Games

Kafka 簡介 Kafka 是一種高吞吐、分散式、基於發佈和訂閱模型的消息系統,最初是由 LinkedIn 公司採用 Scala 和 java 開發的開源流處理軟體平臺,目前是 Apache 的開源項目。 Kafka 用於離線和線上消息的消費,將消息數據按順序保存在磁碟上,併在集群內以副本的形式存 ...


Kafka 簡介

Kafka 是一種高吞吐、分散式、基於發佈和訂閱模型的消息系統,最初是由 LinkedIn 公司採用 Scala 和 java 開發的開源流處理軟體平臺,目前是 Apache 的開源項目。

Kafka 用於離線和線上消息的消費,將消息數據按順序保存在磁碟上,併在集群內以副本的形式存儲以防止數據丟失。Kafka 可以依賴 ZooKeeper 進行集群管理,並且受到越來越多的分散式處理系統的青睞,比如 Storm、Spark、Flink 等都支持與 Kafka 集成,用於實時流式計算。

Kafka 開發者 Jay Kreps 提及關於 Kafka 名字的由來:
“ 因為 Kafka 系統的寫性能很強,所以找一個作家的名字來命名似乎是個好主意,大學期間我上了很多文學課,非常喜歡 Franz Kafka 這個作家,另外,這個名字聽上去也很酷~~ ”

消息隊列是乾什麼的?

學習 Kafka 不可避免地要認識下消息隊列,也就是我們常提到的 MQ(Message Queue),因為 Kafka 本質上也是一個消息隊列。

那麼消息隊列又是什麼呢?先來看一個比較官方的回答。

消息隊列是一種進程間通信或者同一個進程中不同線程間的通信方式,主要解決非同步處理、應用耦合、流量消峰等問題,實現高性能、高可用、可伸縮和最終一致性架構,是大型分散式系統不可缺少的中間件。

再說的直觀點,如下圖,系統 A 將消息發佈到 MQ,然後系統 B 再從 MQ 取消息。
在這裡插入圖片描述
那麼,為什麼系統 A 不直接發消息給系統 B ,中間還要隔一個 MQ 呢?這就要看下 MQ 的三個主要功能了。

1)非同步處理

消息隊列提供了非同步處理機制,因為很多時候用戶並不需要立即響應來處理消息,那麼通過這個機制就可以把所有消息放入 MQ 中。比如,某系統發來的數據中包含很多圖片信息,如果對其中的信息都進行保存處理,用戶一番操作下來可能會很久。採用非同步處理之後,系統會將所有數據存放在 MQ 中,用戶不需要立即處理,大大縮短了系統的響應時間。
在這裡插入圖片描述
2)應用解耦

消息隊列可以對系統間的依賴進行解耦,降低依賴系統變更帶來的影響。比如,用戶在下單後,訂單系統A需要通知系統B、系統C等做出響應的處理。傳統的做法,如下圖所示。
在這裡插入圖片描述
此時的系統A是強依賴系統B和系統C的,一旦系統B出現故障或者需要重新加入高耦合的系統D時,就必須要更改系統A的代碼。
在這裡插入圖片描述
如果經常出現這種依賴系統迭代的情況,那麼系統A就會很難維護,可以通過消息隊列對依賴系統進行解耦(如下圖),這樣系統A也無需關心其他系統的可用性。
在這裡插入圖片描述
3)流量削峰

流量削峰還有個形象的名字叫做削峰填谷,其實就是指當數據量激增時,能夠有效地隔離上下游業務,將上游突增的流量緩存起來,真正地填到谷中,以平滑的方式傳到下游系統,避免了流量的不規則衝擊。

比如,有個活動頁面平時也就 50qps,某一特殊時刻訪問量突然增多,能達到 1000qps,但是當前系統的處理能力最多為 100qps,這個時候可以通過消息隊列來進行削峰填谷,如下圖所示。
在這裡插入圖片描述
當然,Kafka 除了以上 MQ 這些功能之外,還提供了消息順序性保障、回溯消息、持久化存儲等功能,這個在後續文章中會詳細講解。

MQ 的兩種傳輸模式

消息在 MQ 中有兩種傳輸模型,分別是點對點(point to point)和發佈/訂閱(publish/subscribe)模型。

1)點對點模型

如圖所示,系統A發送的消息只能被系統B接收,其他的任何系統都不能獲取到系統A發送的消息。在日常生活中就像A撥通了B的電話,其他人是不可能接聽到的。
在這裡插入圖片描述

2)發佈/訂閱模型

與點對點模型的區別在於發佈/訂閱模型多了一個 topic 的概念,可以存在多個發佈者向相同主題發送消息,而訂閱者也可以存在多個,接收相同主題的消息。在日常生活中就像不同主題的報紙期刊,同時也有不同群體的讀者來訂閱。
在這裡插入圖片描述
那麼 Kafka 屬於哪種呢,事實上 Kafka 可以同時支持這兩種傳輸模型,這個後面會講。

Kafka 系統架構

終於到主角登場了,一個典型的Kafka 系統架構會包括 Producer、broker、Cosumer 等角色,以及一個 ZooKeeper 集群,先上個圖。
在這裡插入圖片描述

  • Producer:生產者,負責將客戶端生產的消息發送到 Kafka 中,可以支持消息的非同步發送和批量發送;
  • broker:服務代理節點,Kafka 集群中的一臺伺服器就是一個 broker,可以水平無限擴展,同一個 Topic 的消息可以分佈在多個 broker 中;
  • Consumer:消費者,通過連接到 Kafka 上來接收消息,用於相應的業務邏輯處理。
  • ZooKeeper:不廢話了~不認識它的可以翻下我前面發的文章,一文搞定 ZooKeeper;
  • Consumer Group:消費者組,指的是多個消費者共同組成一個組來消費一個 Topic 中的消息。

前面提到 Kafka 同時支持兩種消息傳輸模型,其中實現點對點模型的方式就是引入了 Consumer Group,目的主要是讓多個消費者同時消費,可以加速整個消費者端的吞吐量。

需要註意的是:一個 Topic 中的一個分區只能被同一個 Consumer Group 中的一個消費者消費,其他消費者不能進行消費。這裡的一個消費者,指的是運行消費者應用的進程,也可以是一個線程。

在整個 Kafka 集群中 Producer 將消息發送給 broker,然後 broker 再將接收到的消息存儲到磁碟中,然後 Consumer 再從 Broker 訂閱並消費消息。ZooKeeper 則是 Kafka 集群用來負責集群元數據的管理、控制器的選舉等操作的。

Kafka 中的重要概念

1)Topic 與 Partition

在 Kafka 中消息是以 Topic 為單位進行歸類的,Topic 在邏輯上可以被認為是一個 Queue,Producer 生產的每一條消息都必須指定一個 Topic,然後 Consumer 會根據訂閱的 Topic 到對應的 broker 上去拉取消息。

為了提升整個集群的吞吐量,Topic 在物理上還可以細分多個分區,一個分區在磁碟上對應一個文件夾。由於一個分區只屬於一個主題,很多時候也會被叫做主題分區(Topic-Partition)。

2)Leader 和 Follower

一個分區會有多個副本,副本之間是一主(Leader)多從(Follower)的關係,Leader 對外提供服務,這裡的對外指的是與客戶端程式進行交互,而 Follower 只是被動地同步 Leader 而已,不能與外界進行交互。

當然了,你可能知道在很多其他系統中 Follower 是可以對外提供服務的,比如 MySQL 的從庫是可以處理讀操作的,但是在 Kafka 中 Follower 只負責消息同步,不會對外提供服務。

一個有意思的事情是現在已經不提倡使用Master-Slave來指代這種主從關係了,畢竟Slave有奴隸的意思,在美國這種嚴禁種族歧視的國度,這種表述有點政治不正確了,所以目前大部分的系統都改成Leader-Follower了。

Kafka 多副本機制

Kafka 為分區引入了多副本機制,同一分區的不同副本中保存的信息是相同的,通過多副本機制實現了故障的自動轉移,當集群中某個 broker 失效時仍然能保證服務可用,可以提升容災能力。

如圖所示,Kafka 集群中有4個 broker,某個 Topic 有三個分區,假設副本因數也有設置為3,那麼每個分區就會有一個 Leader 和兩個 Follower 副本。

在這裡插入圖片描述
副本處於不同 broker 中,生產者與消費者只和 Leader 副本進行交互,而 Follower 副本只負責消息的同步。當 Leader 副本出現故障時,會從 Follower 副本中重新選舉新的 Leader 副本對外提供服務。

接下來我們來瞭解 Kafka 多副本機制中的一些重要術語。

  • AR(Assigned Replicas):一個分區中的所有副本統稱為 AR;
  • ISR(In-Sync Replicas):Leader 副本和所有保持一定程度同步的 Follower 副本(包括 Leader 本身)組成 ISR;
  • OSR(Out-of-Sync Raplicas):與 ISR 相反,沒有與 Leader 副本保持一定程度同步的所有Follower 副本組成OSR;

首先,生產者會將消息發送給 Leader 副本,然後 Follower 副本才能從 Leader 中拉取消息進行同步,在同一時刻,所有副本中的消息不完全相同,也就是說同步期間,Follower 相對於 Leader 而言會有一定程度上的滯後,當然這個滯後程度是可以通過參數來配置的。

那麼,我們就可以釐清了它們三者的關係:AR = ISR + OSR。

Leader 負責維護和跟蹤 ISR 集合中所有 Follower 副本的滯後狀態,當 Follower 出現滯後太多或者失效時,Leader 將會把它從 ISR 集合中剔除。

當然,如果 OSR 集合中有 Follower 同步範圍追上了 Leader,那麼 Leader 也會把它從 OSR 集合中轉移至 ISR 集合。

一般情況下,當 Leader 發送故障或失效時,只有 ISR 集合中的 Follower 才有資格被選舉為新的 Leader,而 OSR 集合中的 Follower 則沒有這個機會(不過可以修改參數配置來改變)。


 


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 知識回顧 上一篇介紹了Spring中三級緩存的singletonObjects、earlySingletonObjects、singletonFactories,Spring在處理迴圈依賴時在實例化後屬性填充前將一個lambda表達式放在了三級緩存中,後續在獲取時進行了判斷,如果不需要進行對象代理, ...
  • 1. Netty源碼研究筆記(2)——Bootstrap系列 顧名思義,Bootstrap是netty提供給使用者的腳手架,類似於Spring的ApplicationContext,通過Bootstrap我們使用一些自定義選項,將相關的組件打包起來,從而快速的啟動伺服器、客戶端。 Bootstrap ...
  • ZooKeeper知識點總結 一、ZooKeeper 的工作機制 二、ZooKeeper 中的 ZAB 協議 三、數據模型與監聽器 四、ZooKeeper 的選舉機制和流程 本文將以如下內容為主線講解ZooKeeper中的學習重點,包括 ZooKeeper 中的角色、ZAB協議、數據模型、選舉機制、 ...
  • 現在驗證碼登錄已經成為很多應用的主流登錄方式,但是對於OAuth2授權來說,手機號驗證碼處理用戶認證就非常繁瑣,很多同學卻不知道怎麼接入。 認真研究胖哥Spring Security OAuth2專欄的都會知道一個事,OAuth2其實不管資源擁有者是如何認證的,只要資源擁有者在授權的環節中認證了就可 ...
  • 來源:csdn.net/xiaojin21cen/article/details/78587425 ZeroC ICE的Java版,Netty2作者的後續之作Apache MINA,Crmky的Cindy之外,還有個超簡單的QuickServer,讓你專心編寫自己的業務代碼,不用編寫一行TCP代碼。 ...
  • 1.創建線程池相關參數 線程池的創建要用ThreadPoolExecutor類的構造方法自定義創建,禁止用Executors的靜態方法創建線程池,防止記憶體溢出和創建過多線程消耗資源。 corePoolSize: 線程池核心線程數量,不會自動銷毀,除非設置了參數allowCoreThreadTimeO ...
  • 我們在上一篇博客中介紹了Linux系統Shell命令行下可執行程式應該遵守的傳參規範(包括了各種選項及其參數)。Python命令行程式做為其中一種,其傳參中也包括了位置參數(positional和可選參數(optional)。Python程式中我們解析在命令行中提供的各種選項(選項保存在sys.ar... ...
  • 1. Netty源碼研究筆記(1)——開篇 1.1. Netty介紹 Netty是一個老牌的高性能網路框架。在眾多開源框架中都有它的身影,比如:grpc、dubbo、seata等。 裡面有著非常多值得學的東西: I/O模型 記憶體管理 各種網路協議的實現:http、redis、websocket等等 ...
一周排行
    -Advertisement-
    Play Games
  • 概述:在C#中,++i和i++都是自增運算符,其中++i先增加值再返回,而i++先返回值再增加。應用場景根據需求選擇,首碼適合先增後用,尾碼適合先用後增。詳細示例提供清晰的代碼演示這兩者的操作時機和實際應用。 在C#中,++i 和 i++ 都是自增運算符,但它們在操作上有細微的差異,主要體現在操作的 ...
  • 上次發佈了:Taurus.MVC 性能壓力測試(ap 壓測 和 linux 下wrk 壓測):.NET Core 版本,今天計劃準備壓測一下 .NET 版本,來測試並記錄一下 Taurus.MVC 框架在 .NET 版本的性能,以便後續持續優化改進。 為了方便對比,本文章的電腦環境和測試思路,儘量和... ...
  • .NET WebAPI作為一種構建RESTful服務的強大工具,為開發者提供了便捷的方式來定義、處理HTTP請求並返迴響應。在設計API介面時,正確地接收和解析客戶端發送的數據至關重要。.NET WebAPI提供了一系列特性,如[FromRoute]、[FromQuery]和[FromBody],用 ...
  • 原因:我之所以想做這個項目,是因為在之前查找關於C#/WPF相關資料時,我發現講解圖像濾鏡的資源非常稀缺。此外,我註意到許多現有的開源庫主要基於CPU進行圖像渲染。這種方式在處理大量圖像時,會導致CPU的渲染負擔過重。因此,我將在下文中介紹如何通過GPU渲染來有效實現圖像的各種濾鏡效果。 生成的效果 ...
  • 引言 上一章我們介紹了在xUnit單元測試中用xUnit.DependencyInject來使用依賴註入,上一章我們的Sample.Repository倉儲層有一個批量註入的介面沒有做單元測試,今天用這個示例來演示一下如何用Bogus創建模擬數據 ,和 EFCore 的種子數據生成 Bogus 的優 ...
  • 一、前言 在自己的項目中,涉及到實時心率曲線的繪製,項目上的曲線繪製,一般很難找到能直接用的第三方庫,而且有些還是定製化的功能,所以還是自己繪製比較方便。很多人一聽到自己畫就害怕,感覺很難,今天就分享一個完整的實時心率數據繪製心率曲線圖的例子;之前的博客也分享給DrawingVisual繪製曲線的方 ...
  • 如果你在自定義的 Main 方法中直接使用 App 類並啟動應用程式,但發現 App.xaml 中定義的資源沒有被正確載入,那麼問題可能在於如何正確配置 App.xaml 與你的 App 類的交互。 確保 App.xaml 文件中的 x:Class 屬性正確指向你的 App 類。這樣,當你創建 Ap ...
  • 一:背景 1. 講故事 上個月有個朋友在微信上找到我,說他們的軟體在客戶那邊隔幾天就要崩潰一次,一直都沒有找到原因,讓我幫忙看下怎麼回事,確實工控類的軟體環境複雜難搞,朋友手上有一個崩潰的dump,剛好丟給我來分析一下。 二:WinDbg分析 1. 程式為什麼會崩潰 windbg 有一個厲害之處在於 ...
  • 前言 .NET生態中有許多依賴註入容器。在大多數情況下,微軟提供的內置容器在易用性和性能方面都非常優秀。外加ASP.NET Core預設使用內置容器,使用很方便。 但是筆者在使用中一直有一個頭疼的問題:服務工廠無法提供請求的服務類型相關的信息。這在一般情況下並沒有影響,但是內置容器支持註冊開放泛型服 ...
  • 一、前言 在項目開發過程中,DataGrid是經常使用到的一個數據展示控制項,而通常表格的最後一列是作為操作列存在,比如會有編輯、刪除等功能按鈕。但WPF的原始DataGrid中,預設只支持固定左側列,這跟大家習慣性操作列放最後不符,今天就來介紹一種簡單的方式實現固定右側列。(這裡的實現方式參考的大佬 ...